
Appendix B
Appendix B: MM5 Model Code

General Notes -
The model source code for Version 3 contains more than 220 subroutines and about 55500 lines of
code including comments. It is written to be portable to many platforms and so is generally stan-
dard in terms of its Fortran and it is self-contained in that it does not require additional libraries to
run.

Vectorization -
Since the code was developed originally for efficiency on a Cray, it is written to vectorize as effi-
ciently as possible. A vectorized loop on these machines is many times faster than an unvector-
ized one. To achieve this, the inner do-loops are often in a horizontal direction to both maximize
the vector length and to reduce the possibility of index dependencies that would inhibit vectoriza-
tion. This is not optimal for non-vector machines with small cache because it can lead to more fre-
quent memory calls as these loops are executed as opposed to the case where the inner loop is
short. However, in practice the code runs well on RISC/cache machines.

Even though most of the physics operates on vertical columns, the physics routines take a whole
north-south slice (see next section) so that vectorization can be done over the I-index (south-
north) (Fig.B1).

Vector
Direction

Parallel Direction

i

j

k

Figure B1
MM5 Tutorial B-1

Appendix B
Parallelization -
Again because of the development on shared-memory parallel Cray processors, the code is struc-
tured to make efficient use of this. Use of multiple processors in parallel speeds up a task by an
amount depending on the parallel efficiency. Typically for MM5, eight processors can speed up
the job by a factor of six. Although this costs more in CPU time it has benefits in real-time fore-
cast applications in getting the forecast out quickly, and sometimes the charging algorithm favors
efficiently parallelized jobs, as they may get the benefit of special low-cost queues. The code also
contains parallelization directives for SGIs and can in principal be parallelized on any multi-pro-
cessor workstation.

To achieve efficient parallelization outer do-loops are often distributed across processors. For
instance, there are several parallel J-loops in the SOLVE routine. J is the west-east horizontal
index, and by having the outer loop over this index the physics calculations are done in north-
south vertical slices. When a J-loop is multi-tasked each value of J goes to a different processor,
so that each operates on a different north-south slice. As processors finish the calculations in their
slice they take the next available one. It can be seen that the code has to be written carefully to
allow this to work, and essentially each J-slice’s calculations must be independent of the results
generated by other slices.

Multi-tasked sections of code have a clear distinction between shared and private (or local) mem-
ory. Shared memory is seen by all the processors, while private memory is seen only by a single
processor as each processor has its own copy of these arrays. Often the multi-tasking preprocessor
is able to decide which variables are shared or private but some declarations are required, particu-
larly for variables passed into subroutines within a multi-tasked loop. In general scalars and arrays
that are constant in the parallel region (read only) should be shared, while those that do change
their value (are written to) should be private. The major exception to this is an array with an index
corresponding to the multi-tasking index (e.g. a J index in a DO J multi-tasked loop). These arrays
have to be shared and special care is required if the array is written to. It is safest to avoid refer-
ences to J+1, J-1 etc. elements within a multi-tasked J loop. The computation will execute the J
loop in essentially random order, so no dependence on results from other J-slices should exist.

Common blocks within parallel sections of code also have to be treated carefully. If each task
needs its own copy of a common block, such as for storing temporary variables that are not
dimensioned by the tasked loop index (usually J), there is a Cray command

CDIR$ TASKCOMMON common-block-name

that accomplishes this. A new standard for parallel directives, recognized by many vendors now,
is OpenMP. The directive for the above in OpenMP looks like

c$omp threadprivate (/common-block-name/)

On older SGI compilers (without OpenMP) this is achieved by a special -Xlocal declaration in the
load options. Without such directives all tasks will attempt to use the same memory space leading
to unpredictable results. Note that this is rarely required in MM5 since most common blocks con-
tain domain-wide variables and constants. However, the Burk-Thompson and Gayno-Seaman
PBL schemes use common blocks for storing temporary values to pass between its own subrou-
tines, as do the Noah land-surface model and the RRTM radiation scheme.
B-2 MM5 Tutorial

Appendix B
Parallelization is implemented by placing a special directive ahead of the parallel loop. For exam-
ple, the following loop parallelizes over J,

cmic$ do all autoscope
c$doacross
c$& share(klp1,qdot,wtens,il,jl),
c$& local(i,j)
c$omp parallel do default(shared)
c$omp private(i,j)
 DO J=1,JL
 DO I=1,IL
 QDOT(I,J,KLP1)=0.
 WTENS(I,J,KLP1)=0.
 ENDDO
 ENDDO

where the cmic$ represents a Cray directive and c$ represent SGI directives, and c$omp represent
OpenMP directives. Note that these appear as comments to a Fortran compiler and only have spe-
cial meaning to the parallel preprocessors.

Use of pointers -
Perhaps the most nonstandard aspect of the code is the use of Cray pointers which are now sup-
ported on most platforms. In the model these are used to allow the code to operate on multiple
domains without the need for an additional array index to identify the domain. When the code is
doing calculations for a given nest, the pointers give the locations in the memory of all the arrays
associated with that nest. Thus subroutines using these arrays, such as UA (a 3D array of x-direc-
tion wind component), have to have a pointer statement as follows.

 POINTER (IAUA, UA(MIX,MJX,MKX))

IAUA is an address locating the first element of UA which is dimensioned by parameters MIX,
MJX and MKX. The model typically uses about 300 such addresses to locate all the information
on a given nest. These 300 variables representing 0-dimensional scalars to 4-dimensional arrays
are actually stored end-to-end in two super-arrays, one for reals (ALLARR) and one for integers
(INTALL) (Fig. B2). There are also additional super-arrays for FDDA. The pointers locate the
starting position of each variable in the super-array. This array is dimensioned by the sum of all
the array sizes, which may reach a few million, as its first index and by the number of domains as
its second index. Routine ADDALL, called once at the beginning of the simulation, calculates all
these addresses based on the sizes of the arrays, gets their absolute addresses with the LOC func-
tion, and stores these in a 2D array (IAXALL) dimensioned by about 300 and the number of
domains.

Each time the model calculations shift from one domain to another the addresses in the pointers,
such as IAUA, have to be changed by a call to routine ADDRX1C which has the new domain
number as an argument. Sometimes information for two domains is needed at once, such as when
a nest feeds back to the coarser mesh, and ADDRX1N is used to locate the addresses for the sec-
ond domain. These routines take the relevant addresses from IAXALL and put them into common
blocks such as /ADDR1/ (see below), overwriting the common blocks each time the routines are
called.
MM5 Tutorial B-3

Appendix B
 COMMON/ADDR1/ IAUA, IAUB, IAVA, IAVB, IATA, IATB, IAQVA, IAQVB, ..

There are several common blocks of pointers, and these are passed to various routines together
with the pointer statements. The use of pointers allows the routines not to require domain number
specifiers. Alternative methods would either require a large number of EQUIVALENCE state-
ments, or equivalencing through passing a large number of arguments into certain routines.

Distributed-memory version -
Distributed-memory machines are becoming increasingly common. These machines can run a
gridded domain by distributing the grid across a number of independent processors which all only
calculate and store information for a sub-area of the grid. At various points during the calculation
there needs to be communication between processors, but the coding has to minimize these to
maintain efficiency.

In 1998, in release 2.8, we added a capability for MM5 to run on distributed-memory machines.
This involves several code pre-compilation steps, and uses mostly the same code as the standard
MM5, with ‘ifdef MPP’ being used to isolate specific differences. The pre-compilation involves
two stages. In the first using FLIC (Fortran Loop and Index Converter), DO loops are replaced by

UA

UA

IAUA

IAUA

UB

UB VA

VA VB

VB

IAUB

IAUB

IAVA

IAVA

IAVB

IAVB

IAUA IAUB

Variables ~ 106 dimension

Domain 1

Domain 2

Domain 1

Domain 2

ALLARR

IAXALL

Pointers ~ 300 dimension

M
A
X
N
E
S Figure B2
B-4 MM5 Tutorial

Appendix B
generic FLIC directives and other areas of the code are modified to allow for distributed memory.
In the second stage RSL (Run-time System Language) commands are inserted which is a high-
level language built on the low-level MPI standard for message passing. This leads to an auto-
mated code conversion which is run as part of the “make” process when MPP options are
selected.

John Michalakes (Argonne National Laboratory) has developed FLIC and RSL and applied them
to MM5. The resulting extension of MM5 to these platforms is proving to make efficient use of
multiple distributed processors on machines such as the IBM SP2 and Cray T3E, and more
recently Fujitsu, Compaq, and PC clusters.

Brief Code Description -
This is a brief, and not very thorough, description of the model’s code. The main program is MM5
(filename is ./Run/mm5.F). This calls routines to initialize the pointer addresses (ADDALL), the
model constants (PARAM), to restart (INITSAV) or initialize and read in (INIT) the model arrays,
and to read in boundary conditions (BDYIN). It then executes the main time loop of the program.
If there is no nest the time loop just has a call to SOLVE and occasional calls to OUTPUT.
SOLVE is the routine that calls all the physics and dynamics routines and is responsible for all the
model calculations. If there is a nest, there is a call to STOTNDI before SOLVE to define the ini-
tial nest boundary values by interpolation from the coarse mesh, and after SOLVE there is a call to
a driver routine NSTLEV1. The main program is also responsible through CHKNST for initializ-
ing and ending nest.

NSTLEV1 calls STOTNDT which calculates the nest boundary tendency based on that of the
coarse mesh which is known after SOLVE has been called. It then executes three nested
timesteps, which are one third of the coarse mesh’s, in which it calls SOLVE for the nested
domain, thus advancing that domain to the same time as the coarse mesh. It then calls FEEDBK to
overwrite the coarse mesh values that coincide with nested grid-points. If there is a further nested
level, NSTLEV1 will also call STOTNDI and NSTLEV2 for each subdomain at the next level.

SOLVE is the main solver routine in which all the fields are advanced to the next time level. It
does this by calling routines that calculate tendencies due to advection (VADV, HADV), diffusion
(DIFFU, DIFFUT), PBL (e.g. HIRPBL), cumulus (e.g. CUPARA2), explicit moisture (e.g.
EXMOISS), radiation (e.g. LWRAD, SWRAD), FDDA (NUDOB, NUDGD), boundary condi-
tions (NUDGE), and dynamics (SOUND). In addition some tendencies are added within SOLVE
itself, such as the adiabatic temperature term and the buoyancy and Coriolis momentum terms.

SOUND handles some terms using a short timestep. These terms, responsible for acoustic modes,
are the pressure gradient terms in the momentum equations and the divergence term in the pres-
sure tendency. Thus, only after SOUND are the momentum components and pressure updated
while all the other prognostic variables are updated in SOLVE.
MM5 Tutorial B-5

Appendix B
mm5.F

ADDALL

PARAM

INIT INITSAV

BDYIN

SOLVE

OUTPUT

restart

STOTNDI

nesting

output

time loop
NSTLEV1

nesting

end

start

CHKNST
B-6 MM5 Tutorial

Appendix B
nstlev1.F

from MM5

SOLVE

further nesting

STOTNDT

STOTNDI

nest time loop

FEEDBK

to MM5

NSTLEV2
MM5 Tutorial B-7

Appendix B
solve.F

advection

from MM5 or NSTLEV

cumulus
schemes

radiation
schemes

PBL schemes

shallow cumulus scheme

horizontal diffusion

lateral boundary tendencies

FDDA tendencies

exp. moisture
schemes

SOUND

to MM5 or NSTLEV
B-8 MM5 Tutorial

	Appendix B: MM5 Model Code
	General Notes -
	Vectorization -
	Parallelization -
	Use of pointers -
	Distributed-memory version -
	Brief Code Description -

